

Outline

- Problem
- Approach
 - Modeling/Re-engineering
 - Blade Inventory Tracking System (BITS)
 - Advanced Manufacturing
- Payoff
- Summary

Problem/Challenge

Large number of parts (640K)

- Engines from 3 services
 - » AF, NAV, FMS
- Multiple engine types
- Multiple engine series
- Accountability

Costly repair operations

- Rework
- Scrap

Long travel/cycle times

- 8 miles
- 111 days
- Mission capability
- Customer satisfaction

F110

TF3x

Objective/Approach

- ESTABLISH A LOW COST HIGH QUALITY "LEAN" REPAIR CAPABILITY WITHIN THE INTEGRATED BLADE REPAIR CENTER (IBRC)
- MODELING AND RE-ENGINEERING
 - Model Propulsion Production Branch process shops
 - Recommend improvements to reduce repair flowtime, increase capacity, and optimize resource utilization.
 - Implement approved recommendation
 - Release product to OC-ALC
- BLADE INVENTORY TRACKING SYSTEM (BITS)
 - Add a serialized blade tracking and repair history database capability
 - Upgrade IBRC material handling and inventory management system
 - Add a workload scheduling capability
- ADVANCED MANUFACTURING (LEAN PRODUCTION)
 - Reduce non-value added tasks and reduce repair flowtime and cost

Objective/Approach

* Three tier model

- ★ Base level
- ★ Front shop level
- ★ Back shop level
- ★ Modeling is a management tool with application to the dynamics of engine and component repair
 - ★ Analysis at the operation level (model a machine) or at the enterprise level (model the facility)
 - ★ Insight into interactions among disassembly, repair, assembly and supply functions
 - * Assess impact of workload, equipment and manpower changes
 - ★ Identify constraints and bottlenecks
 - ★ Investigate alternative solutions BEFORE committing dollar resources
 - ★ Strategic or tactical applications

Model Verification

Engine Flow Day Example

Blade Inventory Tracking System (BITS)

BITS IMPROVES MANAGEMENT CAPABILITY

Shop floor process tracking

- Data quality
- Data quantity
- Information flow
- Serialized tracking

Operations management from the desktop

- Real time load management
- Visibility into process
- Enhanced capability

Status

- Installation/check-out complete
- Training planned

Blade Inventory Tracking System (BITS)

Payoff

INITIAL RESULTS

- \$7M Total Avoidance
- Other Benefits
 - On time delivery
 - Serialized tracking capability
 - Flexibility to reconfigure part flow
 - On-Line Reporting
 - Engine overhaul cycle time reduction

Advanced (Lean Cell) Manufacturing

Verification

- **Complex long-duration repair** made LPT1 nozzle a prime candidate for lean production
 - 10 industrial processes
 - 208 process steps
- Over 8 miles of travel distance per part
- Results of simulation runs verified LPT1 nozzle is on critical path
- Potential exists for significantly reducing nozzle repair time
- **Critical Path Analysis will** identify similar parts for comparable improvements

Advanced (Lean Cell) Manufacturing

Payoff

PRELIMINARY COST AVOIDANCE

(All costs in FY1999 dollars) (Nozzles & Stators)

		<u>As-Is</u>	Lean Cell	Net Avoidance
Reduced Repair Cost	Nozzles:	\$ 16.6M	\$ 12.0M	\$ 4.6M
(Ten Year Totals)	Stators:	\$ 49.9M	\$ 33.0M	\$ 16.9M
	Total:	\$ 66.5M	\$ 45.0M	\$ 21.5M

Reduced Flow Time (Calendar Days)

Nozzles: 110+ days 55 days 50% reduction

Stators: 90+ days 15 days 80% reduction

Space Savings (Shop floor)

10,200 sq. ft. Total space savings

Advanced (Lean Cell) Manufacturing

—-<u>|100 FT</u>|—

B3221 NOZZLE FLOW

Summary

- Analytical Tool
 - Objective Decision Making
 - Verifies Critical Components
- Tracking System
 - Seamless Flow
 - Visibility into Shop
 - Accountability
- Reduce Waste

Lean Blade Repair Pilot

Objective

Establish a low cost, high quality "LEAN" blade repair capability for advanced propulsion systems

Approach

- Model repair process enterprise with witness software
- Develop analytical tool box
- Identify engine/blade repair requirements
- · Implement advanced manufacturing concepts
- Develop Blade Tracking System

Deliverables

- Computer model/analytical tool box
- Automated serialized blade tracking system
- Lean manufacturing/repair capability

Contract Background

• Jointness: Air Force and Navy Engines

• Execution: Air Force

• Contractor #: F33615-93-C-4301

Contractor/Location: General Atomics/San Diego CA

Start Date/End Date: Aug 93/Feb 01
Project Engineer: Rafael Reed

	<u>Prior</u>	<u>FY98</u>	FY00	FY01	<u>Total</u>
MT Funds (\$K)	3,933		1,188	637	5,758
PRAM (\$K)	2,707	7,197			9,904
					15,662

Implementation/Customer

Implementation at OC-ALC, Tinker AFB OK, Bldgs 3221/3001.

Benefits

- Technical and BP&P (Total Enterprise Approach)
- Eliminate non value added activities
- Reduced scrap
- Reduced cost of component overhaul
- Reduced overhaul cycle time
- Enhanced capability to process advanced thin walled blades

Related Efforts

- Lean Aircraft Initiative
- Lean Sustainment Initiative